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Abstract

The present paper investigates the numerical simulation of steady laminar incompressible natural convection heat transfer in an
enclosed cavity that is filled with a fluid-saturated porous medium. The bottom wall is subjected to a relatively higher temperature than
the top wall while the vertical walls are considered to be insulated. The flow field is modeled upon incorporating different non-Darcian
effects, such as the convective term, Brinkman effect and Forchhiemer quadratic inertial effect. Moreover the two-equation model is used
to separately account for the local fluid and solid temperatures. The numerical solution is obtained through the application of the finite
volume method. The appraisals of the sought objectives are performed upon identifying key dimensionless groups of parameters. These
dimensionless groups along with their operating domains are: Rayleigh number 1 6 Ra 6 400, Darcy number 10�4

6 Da 6 10�3, effec-
tive fluid-to-solid thermal conductivity ratio 0.1 6 j 6 1.0, and the modified Biot number 1 6 v 6 100. The non-Darcian effects are first
examined over a broad range of Rayleigh number. Next, the implications of the group of parameters on the flow circulation intensity,
local thermal non-equilibrium (LTNE) and average Nusselt number are highlighted and pertinent observations are documented.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in a fluid-saturated porous medium
is of significant interest to researchers owing to its various
applications in different fields such as geothermal energy
modeling, thermal insulation material, cooling of electronic
devices and solar receivers to name a few. Several excellent
monographs summarizing the state-of-the-art available in
the literature testify to the maturity of this area, see for
example, Nield and Bejan [1], Ingham and Pop [2], Vafai
[3], Pop and Ingham [4], Bejan and Kraus [5], Ingham
et al. [6] and Bejan et al. [7].
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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The buoyancy-driven convection associated with a cav-
ity heated from below brings about patterns of convection
cells. In each cell, the fluid rotates in a closed orbit and the
direction of rotation alternates with successive cells. This
phenomenon is conventionally referred to in the literature
as the Bénard convection. Such a convection phenomenon
also receives a broad attention owing to the inherited
hydrodynamic fluid stability. The critical Rayleigh number,
which signals the onset of natural convection, was first
reported by Lapwood [8] to be equal to 4p2 for a Darcy
fluid flow in a porous medium bounded between two infi-
nite horizontal surfaces maintained at two different isother-
mal temperatures.

The presence of a porous medium inside the cavity hin-
ders the buoyancy-driven activities. In essence, the momen-
tum transport process in a porous medium is governed by
several inherited phenomena such as the non-Darcian
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Nomenclature

A aspect ratio, L/H
asf specific surface area (m2/m3)
cf fluid specific heat (J/(kg K))
Da Darcy number, K/H2

F inertia coefficient
hsf interstitial heat transfer coefficient (W m�2 K�1)
H cavity height (m)
k thermal conductivity (W m�1 K�1)
km modified thermal conductivity, ekf + (1 � e)ks
K permeability (m2)
L cavity length (m)
P dimensionless pressure, pH 2=qfa

2
m

p pressure (kPa)
Pr Prandtl number, mf/af
Ra Rayleigh–Darcy number, gb(Th � Tc)H

3Da/
mfam

T intrinsic average fluid or solid temperature (K)
u, v interstitial velocity components (m/s)
v interstitial velocity vector (m/s)
V dimensionless interstitial velocity vector, vH/am
U, V dimensionless interstitial velocity components

x, y spatial axial and transverse coordinates (m)
X dimensionless axial coordinates, x/H
Y dimensionless radial coordinates, y/H
af thermal diffusivity (k/qc)f
am modified thermal diffusivity, km/(qc)
v modified Biot number, hsfasfH

2/km
e porosity (m3/m3)
j effective fluid-to-solid thermal conductivity

ratio, kfeff/kseff
mf fluid kinematic viscosity (m2 s�1)
qf fluid density (kg/m3)
h dimensionless temperature, (T � Tc)/(Th � Tc)
W dimensionless stream function

Subscripts

c cold
eff effective
f fluid
h hot
s solid
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effects. These non-Darcian effects represent deviations from
the familiar Darcy�s law. Such non-Darcian effects include
the viscous and quadratic inertial effects and the spatial-
porosity variation effect. In addition, the modeling of the
energy transport mechanism in a porous medium has its
own share of challenging fronts. For example, the flow
through the tortuous paths of a porous structure offers flow
recirculation and mixing, which is classified in the literature
under thermal dispersion effect. Moreover, modeling of a
porous medium transport coefficient, i.e., energy carrier
involves various presumptions and theories. Such chal-
lenges serve as ingredients for a wide debate and discussion
over the appropriate modeling of the various effects, which
is reflected in the large number of publications cited in the
literature in this regard. The work of Kaviany [9], Nield
and Bejan [1] and Vafai [3] can be cited as lead references
in this regard.

The implications of the quadratic inertia term and the
viscous term on natural convection heat transfer were tack-
led, for instance, by Chan et al. [10] and Lauriat and Pra-
sad [11]. Also, the impact of Prandtl number on the Bénard
convection was numerically investigated by Georgiadis and
Catton [12] and Lage et al. [13]. Vasseur et al. [14] con-
ducted a numerical simulation using the Darcy–Brinkman
model to study the flow and thermal behaviors in a shallow
cavity subjected to a uniform heating and cooling through
opposite walls. Their results demonstrated the dependence
of the Nusselt number predictions on the Darcy–Rayleigh
number and Darcy number. Furthermore, Beji and Gobin
[15] and Al-Amiri [16] have discussed the contribution of
thermal dispersion to the overall natural convection heat
transfer mechanism. Such an effect is customarily modeled
as a diffusive term added to the effective thermal conductiv-
ity of the fluid phase. Both studies reported an appreciated
increase in the computed Nusselt number upon incorporat-
ing thermal dispersion effect and better agreement with
experimental results as well.

It is customary to handle the modeling of transport phe-
nomena inside porous media using the volume-averaging
method. The work of Vafai and Tien [17] is widely recog-
nized for using the volume-averaging technique coupled
with semi-empirical formulas to arrive at the two-dimen-
sional momentum equation, which would complement
the empirical energy conservation equation. The work of
Khashan et al. [18] has elaborated on the implementation
of the above method.

Our review of literature has indicated that most of the
reported studies on Bénard convection had resorted to
local thermal equilibrium (LTE) model, which presumes
that the fluid and the solid phases are defined by a unique
temperature at a given location within the porous medium.
Such an assumption cannot be justified, however, when the
temperature difference between the two phases is consid-
ered a crucial design parameter such as, for example, in
porous metal heat exchangers and nuclear fluid rods placed
in a coolant bath (see [19]). When the local fluid and solid
phase temperatures are accounted for separately, two
energy equations emerge to represent each phase. These
equations supplemented with an additional term that mod-
els the modes of heat transfer between the two phases. In a
series of studies spear-headed by Amiri and co-workers
[20–22], the validity of local thermal equilibrium assump-
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tion and its domain of applicability was thoroughly dis-
cussed and explored under various selected scenarios.

The motivation behind the present work is to examine
the severity of the local thermal equilibrium assumption
in a shallow cavity filled with a fluid-saturated porous med-
ium subjected to isothermal heating and cooling from below
and above, respectively. Four different flow field models are
considered in this regard, namely; the Darcy model, Darcy–
Brinkman model, Darcy–Brinkman with convective term
and the generalized form of the momentum equation, which
accounts for the flow convective, viscous and inertial effects.
In addition, the governing equations are discretized using
the finite volume method while employing the primitive
variables approach. Furthermore, the significance of the
local thermal non-equilibrium (LTNE) model along with
flow circulation intensity and Nusselt number predictions
are examined over a broad range of dimensionless groups
such as the Rayleigh number, Darcy number, effective
fluid-to-solid thermal conductivity ratio and the modified
Biot number, i.e., dimensionless interstitial heat transfer.

2. Mathematical formulation

The current investigation addressed the momentum and
energy transport phenomena of a steady natural convective
flow inside a two-dimensional cavity filled with a fluid-
saturated porous medium. The fluid is a Newtonian incom-
pressible fluid (Pr = 0.7) that operates under the laminar
regime. The cavity walls are assumed to be rigid, imperme-
able and non-conducting. Furthermore, the porous med-
ium is considered to be homogenous and isotropic
throughout the cavity with a porosity value of e = 0.9.
The schematic configuration of the problem is illustrated
in Fig. 1, where H and L denote the height and length of
the cavity, respectively. A shallow cavity with an aspect
ratio A = L/H = 5 is considered in the current investiga-
tion. Moreover, it is assumed that the onset of natural con-
vection takes place keeping the horizontal bottom wall to a
relatively higher temperature Th than its top counterpart
Tc, whereas the vertical walls are assumed to be insulated.
The physical properties of the working fluid and the solid
matrix are taken to be constant except for the density var-
iation in the buoyancy force, which is treated according to
the Boussinesq approximation.
fluid-saturated
porous mediumcold wall temperature, Tc

HR

X

L

hot wall temperature, Th

Fig. 1. Schematic representation of the porous cavity.
The variation in the local fluid and solid phase temper-
atures are considered throughout the porous cavity except
at the solid boundaries. Accordingly, each phase is repre-
sented by a separate energy equation. In addition, the
energy communication between the two phases is assumed
solely attributed to a convective mode of heat transfer. Vis-
cous dissipation, heat generation and pressure work are all
assumed to have negligible effect on the velocity and tem-
perature fields and, thus, are neglected.

The steady state modeling of the governing equations
for mass, momentum and energy is based on volume-aver-
aging method and is presented here in canonical forms as
outlined by Amiri and Vafai [20]

r � hvi ¼ 0 ð1Þ
1

e2
hðv � rÞvi ¼ � 1

qf

rhpif þ mf
e
r2hvi � mfhvi

K

� F

K1=2
jhvijhvi � bðhT fif � T cÞg ð2Þ

eðqcÞfv � rhT fif ¼ r � ðkfeff � rhT fifÞ þ hsfasfðhT sis � hT fifÞ
ð3Þ

r � ðkseff � rhT sisÞ � hsfasfðhT sis � hT fifÞ ¼ 0 ð4Þ

where asf is the interstitial surface area per unit volume of
a porous medium, b is the fluid volumetric expansion
coefficient, F is the inertia coefficient, kfeff = ekf and kseff =
(1 � e)ks are the effective fluid and solid thermal conduc-
tivities, respectively, hsf is the interstitial heat transfer
coefficient, mf is the fluid kinematic viscosity, qf is the fluid
density, T stands for temperature, jhvij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and v

represents the interstitial velocity vector. Hereafter, the
volume-average symbol h i will be dropped for conve-
nience. The permeability of the porous medium is ap-
praised by the dimensionless Darcy number. It has been
argued that the convective term can be omitted in forced
convection flows in porous media. However, its influence
is retained in the current study to examine its impact on
the momentum and energy transport processes inside the
cavity.

With the two energy equations at hand, the effective
thermal conductivity is defined separately for each phase.
In carrying out this investigation, no slip velocity condition
is imposed at the solid walls. Also, both fluid and solid
phases are assumed in local thermal equilibrium at the solid
walls. The mathematical model is completed by outlining
the boundary conditions, which are v = 0 at the walls,
T = Th at y = 0, T = Tc at y = H, oT/ox = 0 at x = 0,L.
The selection of material properties was merely based on
a wide spectrum of possible encountered engineering appli-
cations. It is convenient to cast the governing equations in
terms of dimensionless variables such that

X ¼ x
H
; Y ¼ y

H
; Da ¼ K

H 2
; V ¼ vH

am
;

P ¼ pH 2

qa2m
; Pr ¼ mf

af
; h ¼ T � T c

T h � T c

ð5Þ
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where Da is the Darcy number. The modified thermal
diffusivity am is set equal to km/(qc)f, where km = ekf +
(1 � e)ks. Upon employing the dimensionless variables,
the governing equations can be written as

r�V¼ 0 ð6Þ
1þj�1

ePr

� �
ðV �rVÞ¼�rP þ1

e
r2V� 1

Da
V

� eF ð1þj�1Þ
PrDa1=2

jVjVþ Ra
Da

hfk ð7Þ

ð1þj�1ÞðV �rhfÞ¼r2hf þvð1þj�1Þðhs�hfÞ ð8Þ
0¼r2hs�vð1þjÞðhs�hfÞ ð9Þ
where v, j and Ra are, respectively, the modified Biot num-
ber, effective fluid-to-solid thermal conductivity ratio and
Rayleigh–Darcy number given by

v ¼ hsfasfH 2

km
; j ¼ kfeff

kseff
; Ra ¼ gbðT h � T cÞH 3

mfam
Da ð10Þ

It should be pointed out that the modified Biot number v
(herein after referred to as Biot number) is defined as a
function of km and not kfeff such that the implications of
varying v is isolated from the effect of j to arrive at two
independent dimensionless groups. In essence, the Biot
number definition is a measure of the conduction thermal
resistance offered by the porous medium over the intersti-
tial convective thermal resistance between the two phases.
What is more, the definition of the Rayleigh–Darcy (or
Rayleigh number, for short) is consistent with the defini-
tion reported in the literature which emerges from natural
convection Darcian flows in porous media. The total body
force responsible for flow circulation is represented by Ra/
Da. It should be pointed out that this body force term is
related to the Rayleigh number for classical clear flows in
the following manner:

Ra
Da

¼ Raclear flow

eð1þ j�1Þ ð11Þ

Onemay deduce fromEq. (7) that the body force term can
be increased by either increasing theRayleigh number, which
provides a measure for the imposed temperature gradient
DT, or decreasing the Darcy number, which is a measure
of the permeability of the porous medium. Hence, a large
value of Rayleigh number reflects an increase in buoyancy
force strength, whereas a decrease in Darcy number signals
a decrease in flow conductance. Eq. (7) will be referred herein
after by the generalized form of the momentum equation.

In accordance with the problem description, it is instruc-
tive to outline the dimensionless boundary conditions
which are given by

V ¼ ð0; 0Þ at X ¼ 0;A; 0 6 Y 6 1

V ¼ ð0; 0Þ at Y ¼ 0; 1; 0 6 X 6 A

hf ¼ hs ¼ 1 at Y ¼ 0; 0 6 X 6 A

hf ¼ hs ¼ 0 at Y ¼ 1; 0 6 X 6 A

ohf
oX

¼ ohs
oX

¼ 0 at X ¼ 0;A; 0 < Y < 1

ð12Þ
The steady state value of the local Nusselt number can be
calculated by integrating the energy flow across a horizon-
tal cross-section upon incorporating the dimensionless
variables to arrive at the following expression

Nu ¼ qwH
kmðT h � T cÞ

¼ � 1

ð1þ j�1Þ
ohf
oY

þ 1

ð1þ jÞ
ohs
oY

� �
Y¼0

ð13Þ

Similarly, the average Nusselt number can be written as

Nu ¼ �1

A

Z A

0

1

ð1þ j�1Þ
ohf
oY

þ 1

ð1þ jÞ
ohs
oY

� �
Y¼0

dX ð14Þ

It is essential to use the effective thermal conductivities of
the fluid and solid phase in the expression of the overage
Nusselt number in order to obtain a more accurate and
meaningful representation of the dimensionless heat trans-
fer coefficient at the hot wall.

3. Numerical method and solution

The numerical solution of the transformed dimension-
less momentum equations (6) and (7) and the two energy
equations (8) and (9) are discretized using the finite volume
(FV) method. All the dependent variables are solved for in
cell-centered, co-located computational nodes. The surface
and volume integrals of the conservation terms are evalu-
ated using the mid-point approximation. In order to handle
the encountered stiffness of the non-linear system, the con-
vective flux is discretized using the second-order central dif-
ferencing scheme (CDS) that is coupled with an upwind
differencing scheme (UDS) via the �deferred correction�
technique. In this technique, the low-order, but stable, flux
attained using UDS contributes to the matrix coefficients
and the difference between the fluxes obtained using CDS
and UDS contributes to the source term so that CDS-flux
will eventually prevail upon the convergence. Furthermore,
the CDS is used to discretize the diffusive flux. In order to
preserve a compact and structured computational molecule
of the linearized equations, all flux contributions that
would result in off-diagonal matrix coefficients are taken
care of as deferred source terms. The SIMPLEX algorithm
for the pressure–velocity coupling is used. In applying this
algorithm, the cell face velocities needed to impose the
mass conservation constraint, that drives the pressure
and velocity correction, are obtained via a linear momen-
tum interpolation as described by Rhie and Chow [23].

The source term in the motion equation is linearized in
such a way that will ensure diagonal dominance in the cor-
responding discretized equation (see [19]). Moreover, the
Darcian and the quadratic velocity source terms in the
U-momentum equation, for example, can be expressed as

SV ¼ Sc � SpV � Ra
Da

hf

¼ � 1

Da
V � eF ð1þ j�1Þ

PrDa1=2
ðU 2 þ V 2Þ1=2V � Ra

Da
hf ð15Þ
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As a result, the coefficients Sc and Sp are given as

Sc ¼
eF ð1þ j�1Þ
PrDa1=2

ðU 2 þ V 2Þ�1=2V 3 � Ra
Da

hf ð16Þ

Sp ¼
1

Da
þ eF ð1þ j�1Þ

PrDa1=2
½ðU 2 þ V 2Þ�1=2U 2 þ ðU 2 þ V 2Þ1=2�

ð17Þ

Such a representation as outlined above ensures that Sp is
always positive and therefore satisfies the boundedness
condition, which is considered sufficient for convergence.
The resulting systems of the algebraic motion and energy
equations are solved using the simply implicit procedure
(SIP) as outlined by Ferziger and Peric [24]. Since velocity
and temperature fields are coupled in the undergoing inves-
tigation, the motion followed by the energy equations are
solved iteratively until both the change in velocities and
temperature solutions as well as mass imbalance fall below
10�6 at all nodes.

In order to improve the convergence rate, a coarse cor-
rection technique is used. In this technique, three grid lev-
els, which are refined sequentially by slicing it in half in
both spatial dimensions, are employed. The solution
obtained using a coarser grid is interpolated (prolonged)
to initialize the solution on the finer grid. Furthermore,
the third grid level constitutes of 250 · 50 quadrilateral
control volumes distributed along X and Y coordinates,
respectively. Grid clustering near the walls is obtained
using 0.05% stretching from the mid-lines crossing the cav-
ity. It is worth mentioning that the fourth grid level refine-
ment (500 · 100) lead to insignificant changes in the
obtained solution. Finally, the local and average Nusselt
number predictions a long the top and bottom walls is
depicted in Fig. 2 using the Darcy model for Ra = 50,
j = 0.1, v = 10 and Da = 10�3. As can be seen form the fig-
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Fig. 2. Assessment of the local and average Nusselt number predictions
using the Darcy model for Ra = 50, j = 0.1, v = 10 and Da = 10�3.
ure, the results show excellent agreement at both stated
heights to within 10�6 relative difference, which boosts
the confidence in our numerical code.
4. Results and discussion

The prime objective of the current work, as stated
earlier, is to gauge the magnitude of the local thermal
non-equilibrium (LTNE) model over a broad range of
dimensionless groups that represent possible operating
conditions encountered in engineering applications. These
dimensionless groups and their operating envelopes are
the Rayleigh number 1 6 Ra 6 400, Darcy number
10�4

6 Da 6 10�3, dimensionless effective fluid-to-solid
thermal conductivity ratio 0.1 6 j 6 1.0, and modified Biot
number 1 6 v 6 100. In the current numerical work, the
flow circulation intensity is also documented, which is asso-
ciated with the magnitude of LTNE model. In this regard,
the flow intensity could be better represented by introduc-
ing the dimensionless stream function W given by

U ¼ oW
oY

; V ¼ � oW
oX

ð18Þ

which allows for a single representation of flow behavior
instead of the velocity components. It is worth noting that
the negative and positive W values indicate clockwise and
counter-clockwise cells, respectively.

The LTNE model can be quantified to serve as an
assessment tool for examining the validity range of local
thermal equilibrium. This is achieved here by determining
the absolute value of the local temperature difference
between the fluid and solid phase in the entire cavity such
that

LTNE ¼ jhs � hf j ð19Þ
The sensitivity of the LTNE model was documented by
recording the maximum values of both the flow intensity
and LTNE for each particular case study. It should be
pointed out that the significance of LTNE value would ulti-
mately depend on the application at hand, where porous
media applications involving higher risk margins do not
tolerate a large LTNE value.

The current work preludes by weighing the sensitivity
of the various non-Darcian terms listed in the momentum
equation, i.e., Eq. (7), against the generalized form of
the momentum equation. When relaxing one or more
of the non-Darcian terms, the following momentum trans-
port models arise: Darcy (D) model, Darcy–Brinkman
(DB) model, and Darcy–Brinkman with flow convection
(DBC) model, i.e., the generalized model without the Forc-
hhiemer term. Hence, the generalized momentum equation
will encompass all the considered non-Darcian effects in
this investigation and will be referred to as DBFC model.
It is imperative to understand the significance and contri-
bution of each of the non-Darcian term in a laminar
natural convection heat transfer in a cavity setting. Hence,
the different presented models will shed light on such
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non-Darcian effects under a wide range of Ra values. In
natural convection heat transfer applications with the con-
figuration at hand, a prescribed Ra value sets the magni-
tude of the flow activities induced by the buoyancy
forces, which are in turn sustained by the imposed temper-
ature gradient.

It is a mere fact that the Darcy model predicts the high-
est velocity value at any given Ra value owing to negligence
of flow impedance terms such as the solid boundary effect
and the Forchhiemer inertial effect. Furthermore, the
Brinkman term, which accounts for the solid boundary,
forces the no-slip condition at the walls. Such an effect
would reduce the predicted velocity when employing the
DB model. Also, inclusion of the convective term aids flow
motion and, hence, increases the velocity magnitude pre-
dicted upon employing the Darcy–Brinkman model with
the convective term, i.e., DBC model. Finally, the Forchhi-
emer term, which accounts for resistance to flow offered by
the presence of the solid structure, retards flow motion and
suppresses flow circulation especially at elevated flow
speeds. On the contrary, silencing the Forchhiemer term
Fig. 3. Contours of the streamline, solid temperature, fluid temperature and L
numbers of 50 and 400, respectively.
assists in enlarging the discrepancies between the different
tackled case studies. Owing to the massive results generated
in the current numerical investigation, representative
results will be presented for brevity. The DBC model will
be taken as the default for the presented case studies unless
otherwise stated.

Fig. 3 illustrates the streamlines, fluid and solid iso-
therms and LTNE contours for j = 0.1, v = 10 and
Da = 10�3 using the DBC model. Results are shown for
Ra = 50 and Ra = 400. The Bénard convection is clearly
displayed by the repeated rotating cells with �+� and ���
symbols on the streamlines representing clockwise and
counter-clockwise rotation direction, respectively. As the
Rayleigh number increases from 50 to 400, the flow
activities intensify owing to the increase in the sustained
buoyancy forces. This observation is manifested in the
elevation of the streamlines strength when increasing Ra

values. It is also observed that the number of cells has been
reduced eight to six as the operating domain per cell is seen
to be stretched from a length of about half a cavity height
to a full cavity height. Fig. 3 also displays the distribution
TNE using the DBC model with j = 0.1, v = 10, Da = 10�3 and Rayleigh
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of fluid and solid temperatures over the entire cavity for
Ra = 50 and Ra = 400. The solid temperature contours
seems to be stabilized even at Ra = 400, which is likely
accredited to the relatively larger energy transport coeffi-
cient, i.e., kseff attained by the solid. On the contrary, ther-
mal plumes are observed in the fluid temperature
distribution. Such plumes occur at lengths corresponding
to the interface of two consecutive opposite rotating cells.
However, the thermal plumes are noticed to diminish with
the increase in Ra value owing to the increase in flow inten-
sity. The LTNE layout also reflects the repeated cells for-
mation across the length of the cavity. The white
domains represent LTNE values below 0.05, which can
be viewed as the upper constraint of LTE validity. As
can be seen form the figure, the highest recorded exists at
Ra
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Fig. 4. Impact of Rayleigh number on flow intensity and LTNE using the
DBC model with j = 0.1, v = 10 and Da = 10�3.
positions corresponding to the tip of the thermal plumes
offered by the fluid temperature distribution. Meanwhile,
it is vivid that higher encountered flow activities bring
about more isotherm discrepancies between the two phases
as demonstrated by the larger magnitudes of LTNE values
arrived at Ra = 400. It is worth noting that the validity of
LTE condition, based on the above declared criterion, can
be justified at Ra = 400 in the core of the cavity and
between the opposite rotating cells underneath the thermal
plumes pictured in the fluid isotherms.

Fig. 4 displays the maximum recorded W strength for
each of the four models at hand. The results illustrate the
positive values of W as the magnitude of the negative and
maximum of W is almost the same for the configuration
considered in the current investigation. The results show
that the computed stream function values by all the models
fall in close proximity up to a Rayleigh number of 20,
which corresponds to a prevailing conduction heat transfer
regime. Beyond this critical value, the results show that the
largest Wmax values are obtained using the Darcy (D)
model while the lowest is furnished by the generalized
(DBFC) model. Furthermore, the convective term does
not seem to have a significant impact on the recorded Wmax

strength while the DBFC model tends to shy below due to
the flow impedance offered primarily by the Forchhiemer
term. Such depreciation in the velocity prediction by the
DBFC model becomes more pronounced at elevated Ra

values owing to the quadratic nature of the Forchhiemer
term. Although some might be tempted in resorting to
the Darcy model owing to its simplicity, caution should
be exercised giving that the model over predicts the actual
flow motion inside a porous medium, especially at elevated
Ra values. For instance, the discrepancy in the predicted
Wmax values between the Darcy model and the DBFC
Ra
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Fig. 5. Average Nusselt number predictions at different Rayleigh numbers
using the DBC model with j = 0.1, v = 10 and Da = 10�3.
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model magnifies from 22% to 60% upon increasing Ra

value from 100 to 400, respectively. In addition, Fig. 4 pre-
sents the magnitude of the maximum LTNE values, as
defined in Eq. (19), in the considered Ra domain. It is obvi-
ous that the Forchhiemer term is the most crucial factor in
suppressing LTNE value at elevated Ra values. In fact, the
elimination of the Forchhiemer term expands the sustained
temperature difference between the two phases due to aug-
mentation of interstitial convective heat transfer communi-
cation between them. Moreover, it can be seen that the
largest recorded LTNE value at a prescribed Ra value cor-
responds to the model with the highest predicted flow
motion, i.e., the Darcy model. Accordingly, one may
deduce that a higher flow motion agitates LTNE value.
Moreover, it is worth noting that the critical Ra value,
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Fig. 6. Impact of Darcy number on flow intensity and LTNE condition
using the DBC model with j = 0.1, v = 10 and Da = 10�3.
which signals the onset of natural convection, was found
to be less than 20 for all the considered models.

Fig. 5 demonstrates the computed average Nusselt num-
ber at different Ra values. Apparently, the Darcy model
assumes the relatively largest magnitude of convection cur-
rent in the cavity. Consequently, the highest average Nus-
selt number is furnished by the Darcy model and the
lowest by DBFC model. Such an observation is more pro-
nounced at high Ra values. The convective term appears to
slightly improve Nusselt number predictions while the
Forchhiemer term tends to significantly retard flow motion.

Fig. 6 demonstrates the effect of Darcy number on the
flow circulation and LTNE condition using j = 1.0,
v = 100. Again, the Darcy number serves as an indicator
that reflects the permeability of the porous medium. Here,
the effect of Darcy number is more meaningfully sensed by
plotting the considered sought dependent variables against
Ra/Da, where the effect of Darcy number is stripped from
Ra definition. The results clearly show that a higher flow
intensity is associated with a larger considered Da value
(i.e., Da = 10�3). The enhanced flow conductance permits
higher circulation through the porous openings, which sub-
sequently triggers the onset of natural convection at a
lower Ra value. This is turn augments the interstitial con-
vective heat transfer communication between the two
phases, which results in elevating the LTNE magnitude
with the increase in Da value. Moreover, Fig. 7 illustrates
the improvement in the average Nusselt number predic-
tions over the Ra range owing to the increase in Da value.
Such an observation is consistent with published reports in
the literature.

Fig. 8 captures the impact of the effective fluid-to-solid
thermal conductivity ratio j on LTNE condition using
v = 100 and Da = 10�3. Higher flow circulation is recorded
for j = 1.0 as the fluid transport coefficient contributes to
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the buoyancy driven activities and, hence, to the flow circu-
lation. Furthermore, increasing the j value indicates that
the fluid is becoming more capable of exchanging energy,
i.e., better energy carrier from the hot wall to the porous
medium. Accordingly, it confines the local temperature dis-
crepancy between the two phases, which announces the
suppression of LTNE value with the increase in j value.
It is worth noting that the difference attained in the LTNE
value generated between j = 0.1 and j = 1.0 remains
almost the same over the considered over the Ra range
after exceeding the critical Ra value. Moreover, Fig. 9 dis-
plays higher average Nusselt number predictions when
incorporating j = 1.0 instead of j = 0.1. This is likely
attributed to the increase in flow circulation as shown in
the previous figure.
The current investigation is concluded by highlighting
the effect of the Biot number v using j = 0.1 and Da =
10�3. The results are first depicted for the effect of the Biot
number on the flow intensity and LTNE as demonstrated
in Fig. 10. The onset of natural convection is found to be
initiated first when incorporating the lowest considered v
value, i.e., v = 1. However, it is manifested that the rate
at which circulation increases with increasing Ra is higher
when considering the largest v value, i.e., v = 100. Fig. 10
also depicts the maximum LTNE value plotted against
Ra for different v values. The results show that LTE condi-
tion is approached with an increase in v value. This is
attributed to the enhanced communication between the
two phases at the expense of the modified effective thermal
conductivity of the porous medium km. Finally, the average
Nusselt number at various Ra values is displayed in Fig. 11
using j = 0.1 and Da = 10�3. It is clear that the onset of
natural convection is delayed with the increase in v value.
While the natural convection contribution to overall heat
transfer takes effect almost immediately at v = 1 such a
contribution is delayed to roughly Ra = 39 when employ-
ing v = 100. It is noticed, however, that the enhancement
in the average Nusselt number upon employing larger v
values climbs a steeper slope with the increase in Rayleigh
number.

5. Conclusions

The present numerical simulation is concerned with
modeling the steady state behavior of a natural convection
heat transfer inside an enclosed cavity. The cavity is essen-
tially two-dimensional and is filled with a fluid-saturated
porous medium. In addition, the fluid is considered to be
incompressible that operates in the laminar regime,
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whereas the porous medium is considered to be homoge-
nous and isotropic. The thermophysical properties were
assumed to be constant except for the density term rising
in the buoyancy term which is handled according to Bous-
sinesq formulation. Furthermore, the bottom wall was sub-
jected to a relatively higher temperature than the top wall,
whereas the vertical walls were considered to be insulated.
The generalized form of the momentum equation is
employed while provisions are made to examine the indi-
vidual non-Darcian parameters, which constitute the
momentum equation. Moreover, the representation of the
local fluid and solid temperatures were accounted for sep-
arately by employing the two-energy equation model. Also,
the heat transfer between the fluid and solid phase was
assumed to be solely comprised of a convective mode. Sev-
eral dimensionless groups were employed in a selected
operating envelope that corresponds to actual engineering
applications. These dimensionless groups are the Rayleigh
number 1 6 Ra 6 400, Darcy number 10�4

6 Da 6 10�3,
effective fluid-to-solid thermal conductivity ratio 0.1 6
j 6 1.0, and the modified Biot number 1 6 v 6 100.

The chief objective of the current numerical investiga-
tion was to obtain a better understanding of the local tem-
perature discrepancy between the two phases through
introducing the LTNE condition. This condition was stud-
ied in conjunction with the impact of the various dimen-
sional groups on flow circulation intensity and average
Nusselt number predictions. Such an understanding paves
the path for identifying domains where the local thermal
equilibrium (LTE) assumption can be considered valid
within a reasonable accuracy based on the application at
hand.

Amongst the different tackled flow transport models, the
effect of Forchhiemer term was found to be more pro-
nounced at high Ra values. Moreover, the generalized
model was found to predict the lowest velocity magnitude
(due to incorporation of various non-Darcian effects),
whereas the Darcy model was predicting the highest veloc-
ity magnitude at any given Ra value. The results also show
that an elevation in Rayleigh number enhances flow circu-
lation and LTNE value, which ultimately results in an
increase in the average Nusselt number predictions. In
addition, the decrease in Darcy number impedes flow circu-
lation and brings about depreciation in the average Nusselt
number predictions. It also diminishes interstitial heat
transfer communication between the two phases. Thus,
lower LTNE values were observed with a decrease in Da

value. Next, the LTNE value was found to depreciate with
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an increase in the effective fluid-to-solid thermal conductiv-
ity ratio j. Finally, the increase of the Biot number v was
found to improve the local thermal equilibrium assumption
and the average Nusselt number predictions.
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